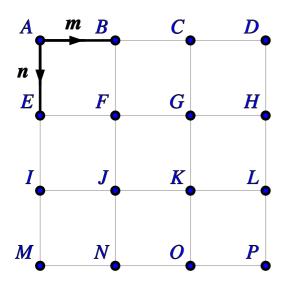
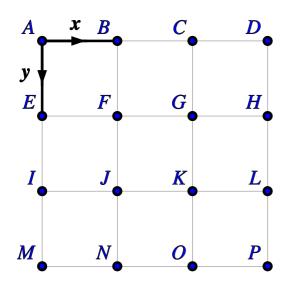
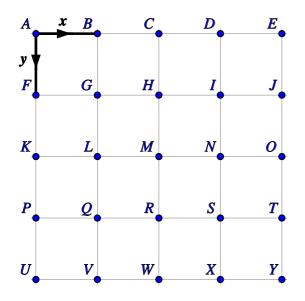

Vectors on a grid				
Name:	Class:	Date:		
		Mark	/6	%

[1]


1) Using the diagram below, express the vector \overrightarrow{BG} in terms of **m** and **n**.

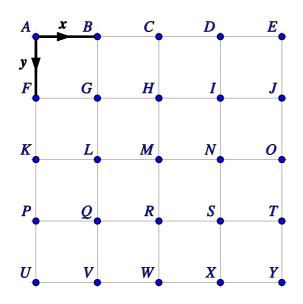
2) Find the vector formed when the vector - **y** is added to point F. Write the vector as capital letters e.g. \overrightarrow{AB} .


3) Using the diagram below, express the vector \overrightarrow{GH} in terms of **m** and **n**.


Copyright Mathster.com 2014. Licensed by Your School with permission to redistribute

[1]

4) Find the vector formed when the vector **y-x** is added to point D. Write the vector as capital letters e.g. \overrightarrow{AB} .


5) In the diagram below, $\overrightarrow{AB} = \mathbf{x}$ and $\overrightarrow{AF} = \mathbf{y}$.

Express the following vectors in terms of **x** and **y**.

a) \overrightarrow{VX} b) \overrightarrow{UP} c) \overrightarrow{LP} d) \overrightarrow{IU}

6) In the diagram below, $\overrightarrow{AB} = \mathbf{x}$ and $\overrightarrow{AF} = \mathbf{y}$.

Find the vectors formed when the following are added to point U, giving your answers as capital letters e.g. \overrightarrow{AB} .

a) 2x b) -4y c) 3x-3y d) 4x-2y

[1]

Solutions for the assessment Vectors on a grid

1) $\overrightarrow{BG} = 2\mathbf{n} \cdot \mathbf{m}$	2) Vector = `vec(FC)
3) $\overrightarrow{GH} = \mathbf{m}$	4) Vector = \overrightarrow{DG}
5) a) $\overrightarrow{VX} = 2\mathbf{x}$	6) a) \overrightarrow{UW}
b) $\overrightarrow{UP} = -\mathbf{y}$	b) \vec{UA}
c) \overrightarrow{LP} = y-x	c) \vec{UI}
d) $\vec{IU} = 3y-3x$	d) \vec{UO}

Copyright Mathster.com 2014. Licensed by Your School with permission to redistribute